The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs

We consider the optimal value reformulation of the bilevel programming problem. It is shown that the Mangasarian-Fromowitz constraint qualification in terms of the basic generalized differentiation constructions of Mordukhovich, which is weaker than the one in terms of Clarke’s nonsmooth tools, fails without any restrictive assumption. Some weakened forms of this constraint qualification are th...

متن کامل

Necessary Optimality Conditions for Multiobjective Bilevel Programs

The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiobjective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of all lower-level problems near...

متن کامل

The bilevel programming problem: reformulations, constraint qualifications and optimality conditions

We consider the bilevel programming problem and its optimal value and KKT one level reformulations. The two reformulations are studied in a unified manner and compared in terms of optimal solutions, constraint qualifications and optimality conditions. We also show that any bilevel programming problem where the lower level problem is linear with respect to the lower level variable, is partially ...

متن کامل

Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification

The paper concerns the study of tilt stability of local minimizers in standard problems of nonlinear programming. This notion plays an important role in both theoretical and numerical aspects of optimization and has drawn a lot of attention in optimization theory and its applications, especially in recent years. Under the classical Mangasarian–Fromovitz Constraint Qualification, we establish re...

متن کامل

Multiobjective optimization problem with variational inequality constraints

We study a general multiobjective optimization problem with variational inequality, equality, inequality and abstract constraints. Fritz John type necessary optimality conditions involving Mordukhovich coderivatives are derived. They lead to Kuhn-Tucker type necessary optimality conditions under additional constraint qualifications including the calmness condition, the error bound constraint qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 2010

ISSN: 0022-3239,1573-2878

DOI: 10.1007/s10957-010-9744-8